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Abstract. Turbulence decay in a strongly stratified medium is simulated by a direct pseudo-spectral
code solving the three-dimensional equations of motion under the Boussinesq approximation. The
results are compared to non-stratified simulations results. We focus on the production of mean shear
energy observed in the stratified case. We then simulate the decay of stratified turbulence when
affected by an initial horizontal mean flow and show that this mean flow is the major component
remaining at larget . Next, we give some analytical elements on wave-shear interaction by using a
simple refraction calculation with WKB hypothesis. This calculation is illustrated by simulating the
interaction between one monochromatic internal wave and a vertical shear profile. We conclude that
the existence of singularities in the mean shear production term in the presence of internal gravity
waves may be one of the possible mechanisms involved within stratified turbulent shear flows.

Key words: stratified fluids, turbulence, mean flow, internal gravity waves, DNS.

1. Introduction

The evolution to anisotropy of turbulent flows under the influence of a vertical
density gradient is still poorly understood. It induces the generation of an internal
gravity wave field which is in strong interaction with the turbulent motions. This
phenomenon was observed in the atmosphere and in the ocean’s thermocline but
its description remained wide open from a fundamental point of view.

In this short paper, some results from our current works on simulation of freely
decaying sheared turbulence in a strongly stratified fluid are presented. The results
are systematically compared to non-stratified analogous situations (see Section 2
for methodology).

Internal waves in the presence of a mean horizontal motion have already been
studied from different points of view. Miles [12] gave a linear stability criterium
for a uniformly stratified shear flow in terms of Richardson number. Bretherton [2]
and McIntyre and Norton [10] studied the mean motion production by dissipation
of internal waves. Booker and Bretherton [1] analytically studied critical layers and
noticed that this non-linear phenomenon should lead to a high energy transfer to
the mean flow. Koop [9] experimentally analyzed the wave field generated by an
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oscillating source in a stratified shear flow and observed the presence of critical
layers.

We would like to highlight the importance of mean vertical shear within turbu-
lent flows. Turbulent shear flows in stratified media have already been simulated
by, for instance, Gerz and coworkers [5, 6] and Jacobitz et al. [8]. Experiments
have been carried out in a thermally stratified wind tunnel by Piccirillo and Van
Atta [13]. However, these numerical and experimental studies generally focus on
the influence of a vertical mean shear on the stratified turbulence. In the present
paper, we focus on the effect of stratified turbulence on the horizontal mean flow.

We first study (Section 3) the decay of an initially isotropic unsheared turbulent
flow in the presence of a strong density gradient (the initial Froude number based
on the integral scale is 0.1). Beyond the well-known wavy exchanges between
poloidal and potential energies (see Section 2 for the definition of these energies),
we focus on the time evolution of the mean shear component of the flow. The
energy of this component, which starts with a very low value as the initial flow
is isotropic, is observed to be not only slowly dissipated but also produced at the
beginning of the decay. We then simulate (Section 4) a strongly stratified flow in
the presence of an initial mean flow. This situation may be compared to the flow
configuration in a turbulent wake. We observe a production of mean shear energy
which in addition is slowly dissipated, so that this horizontal monodimensional
flow is the major component remaining at larget (which is not the case in the
non-stratified case). In Section 5, we propose a shear production mechanism in-
volving the interaction between internal gravity waves and the mean flow itself. A
WKB calculation leads to singularities in the shear production term due to wave
refraction. As an illustration, we simulate the evolution of a flow for which the
initial condition is the superposition of a mean flow and an isolated internal wave
(Section 6). It is found that the wave rapidly transfers its energy to the mean flow.

2. Methodology

2.1. EQUATIONS OFMOTION

The dimensional equations of motion may be written in a Cartesian coordinate
system(e1,e2,e3) under the Boussinesq approximation as:

∇.u = 0, (1)

∂u
∂t
+ (u.∇)u = −1

ρ 0
∇p + αgθe3+ ν∇2u, (2)

∂θ

∂t
+ (u.∇)θ = −Gw +K∇2θ, (3)

whereu = (u, v,w), θ andp are the velocity, temperature (or concentration)
and pressure fields.g is the gravity,ν is the kinematic viscosity,K is the thermal
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diffusivity andα is the expansion coefficient. The density fluctuations are assumed
to linearly depend of the temperature (or concentration) fluctuations:(ρ−ρ0)/ρ0 =
α(θ−θ0), where subscript 0 stands for a reference state.G is the mean temperature
vertical gradient which one can express in function of the Brünt–Väisälä frequency
N : G = N2/αg.

2.2. DIMENSIONLESS NUMBERS

The control parameters of the dynamical system are the Froude and Prandtl num-
bers, which describe the physical properties of the system. However, we choose to
use a Reynolds number which includes a velocity scale of the initial conditions.
Thus, the norm of the initial condition is numerically of order unity.

We will define our simulations in function of the three dimensionless numbers:

− Fr= Uref/Nl, initial Froude number,
− Re= Urefl/ν, initial Reynolds number, and
− Pr= ν/K, Prandtl number.

In these definitions,Uref is the velocity scale of the initial condition (root mean
square velocity) andl is the initial integral scale of turbulence.

2.3. POLOIDAL -TOROIDAL-MEAN SHEAR DECOMPOSITION

We solve the Boussinesq equations with a pseudo-spectral direct simulation code
[15] which uses the poloidal-toroidal-mean shear equations. One can write the
velocity field as the sum of three non-divergent components:

u = utor+ upol+ ush, (4)

where utor and upol are called toroidal and poloidal velocities andush is the
horizontally averaged velocity:ush(z, t) = (U(z, t), V (z, t),0). Components
utor(x, y, z, t) andupol(x, y, z, t) are such that:

− the vertical component ofutor is zero, and
− the vertical vorticity ofupol is zero.

In highly stratified situations (i.e., when the Froude number is a small parameter),
the poloidal component can be seen as the internal waves component [14].

Using the following variables:

− ζ(x, y, z, t), vertical vorticity,
− w(x, y, z, t), vertical velocity, and
− U(z, t) andV (z, t), horizontal mean flow,
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the poloidal, toroidal and shear energies can be written in the Fourier space as:

Etor = 1

2

∑
k

ζ̂ (k)
1

k2
H

ζ̂ ∗(k), (5)

Epol = 1

2

∑
k

ŵ(k)
k2

k2
H

ŵ∗(k), (6)

Esh= 1

2

∑
k

[
Û (k)Û ∗(k)+ V̂ (k)V̂ ∗(k)

]
, (7)

whereˆ stands for the Fourier Transform,∗ denotes complex conjugates,k is the
wave vector,k its norm andkH its horizontal component.

Averaging on the whole periodic box, the total energy may be expressed as:

Etot = Epol+ Etor+ Esh+ Epot,

whereEpot is the potential energy:

Epot= 1

2

∫
R3

θ2(x) dx.

2.4. INITIAL CONDITIONS

We first generate in the spectral space a random velocity field following a gaussian
statistic and an energy spectrum given by:

E(k)

E0
= 32

3kI

√
2

π

(
k

kI

)4

e−2(k/kI )2 ,

whereE(k) is the energy associated with the wave numberk, E0 is the integral
of the spectrum andkI is the injection wave number (peak in the spectrum, taken
equal to 4.76). From this velocity field, we performed a short calculation without
stratification in order to get a non-Gaussian velocity field where non-linear trans-
fers are established (this simulation was stopped after 1.76 turnover timescales).
The velocity field obtained is used as the initial condition for the simulation of the
turbulence decay under the influence of a stable stratification. Then, the integral
lengthscalel of turbulence is such thatl/Lb is of order five whereLb is the size of
the periodic cubic box. This value (which is necessarily limited by the resolution)
insures that the most energetic structures of turbulence are correctly simulated. The
initial density perturbation field is chosen equal to zero.
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Figure 1. Turbulence with no imposed shear initially. Velocity field in a vertical section: initial
condition.

2.5. NUMERICAL SCHEME

The Navier–Stokes equations are solved under the Boussinesq approximation. The
method is called “pseudo-spectral” because the variables are the Fourier transforms
of the physical fields but the non-linear terms are calculated in the physical space.
This demands the use of a Fast Fourier Transform algorithm. The iteration scheme,
called “slaved frog” [4] is of the second order in time and is unconditionally stable
in the absence of non-linear terms.

The validation of the code has been performed in the case of decaying non-
stratified turbulence. In these simulations, the turbulent kinetic energy was found
to follow a power-law in time (not shown), with exponent very much in agreement
with the experimental results of Corrsin [3].

3. Turbulence Decay

Decay of turbulence was simulated according to the previously described method-
ology. The three-dimensional flow is simulated with a 643 resolution, which allows
Re= 50 att = 0. The Prandtl number is taken equal to unity and we choose the
low value Fr= 0.1 att = 0 in order to highlight the properties of strongly stratified
turbulence.

We show the velocity fields in a vertical section att = 0 (Figure 1) and at
the end of the decay, in the stratified and non-stratified cases (Figure 3). Figure 2
shows the evolution of the mean shear energy in the non-stratified and stratified
cases. In order to use a constant and unique timescale for all graphs, we take the
initial turnover timescaleTt = l/Uref as the time unit.

First, we noticed alternative exchanges between poloidal and potential compo-
nents (not shown) on short periods close to half the Brünt–Väisälä period. This
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Figure 2. Turbulence with no imposed shear initially. Evolution of the mean shear energy,
normalized by the initial total energy.−−−: non-stratified case. —-: stratified case (Fr= 0.1).
The time unit is the initial turnover timescale.

result is in agreement with other numerical studies (see, for example, [11]) and
experimental results (such as those of Yoon et al. [16]). Hanazaki and Hunt [7]
have recently shown that these oscillations could be theoretically explained by a

Figure 3. Turbulence with no imposed shear initially. Velocity fields in a vertical section. Left:
end of the decay (t = 20Tt ) in the non-stratified case. Right: end of the decay (t = 20Tt ) in
the stratified case (Fr= 0.1).
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linear theory (Rapid Distortion Theory). Their results are confirmed in the case of
a zero initial potential energy.

In this paper it is not our intention to further describe this oscillatory phe-
nomenon, but we focus our attention on the evolution of the mean shear energy.
Indeed, whereas this energy is monotonically dissipated in the non-stratified case,
production is observed in the strongly stratified situation at the very beginning of
the simulation. One will notice the low value of this shear energy compared to the
other components of kinetic energy. Actually, the initial value of the mean velocity
in a horizontal plane may follow a normal law since it is defined as the average of
a great but finite number of random variables.

Furthermore, it is clear that the one-dimensional feature of the mean shear en-
ergy participates to the low value of its rate of viscous decrease since it is not
concerned by the energetic cascade to dissipative small scales. However, this low
dissipative feature cannot account for the production observed at the beginning of
the decay.

In short, we observe that the mean shear energy, even if representing a small
part of the total energy, is produced at the beginning of the decay with a rate higher
than its (low) dissipation rate.

4. Turbulence Decay with an Initial Mean Flow

Simulation of decaying stratified turbulence with an imposed shear profile was
performed in order to approach the velocity field configuration in the wake of a
body moving in a stratified medium.

The initial condition is here the superposition of the initial condition used in
Section 3 and a mean flow component given by:

V (z) = V0 cos
(

2π
z

Lb

)
,

whereLb is the size of the periodic box.V0 is such that the mean flow energy is
initially of the same order as poloidal and toroidal energies.

The simulation is still defined by the dimensionless numbers Re= 50 att = 0,
Pr= 1 and Fr= 0.1 att = 0 in the stratified case.

We show the velocity fields in a vertical section att = 0 (Figure 4) and at the
end of the decay, in the stratified and non-stratified cases (Figure 7). Figure 5 shows
the evolution of the mean shear energy in the non-stratified and stratified cases. The
plots shown in Figure 6 are the evolution of energies divided by the instantaneous
total energy, in the non-stratified and stratified cases. Thus, they give information
on the partition of the total energy at each time step.

In the non-stratified case, the relative importance of the shear energy increases
at the beginning of the decay. We attribute this phenomenon to the low dissipative
feature of the large scale monodimensional mean flow compared to the other ener-
gies. However, after a few turnover time scales, the horizontal mean flow loses its
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Figure 4. Turbulence with an initially imposed shear. Velocity field in a vertical section: initial
condition.

Figure 5. Turbulence with an initially imposed shear. Evolution of the mean shear energy,
normalized by the initial total energy.−−−: non-stratified case. —-: stratified case (Fr= 0.1).
The time unit is the initial turnover timescale.

coherence and its energetic relative importance decreases. At larget , no signature
of the initial mean flow is visible and the velocity field is roughly isotropic.

On the contrary, in the stratified case, it is clear that the mean flow not only
keeps its coherence but also is the dominating component of the flow at the end of
the decay.
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Figure 6. Turbulence with an initially imposed shear. Evolution of shear, poloidal and toroidal
energies divided by the instantaneous total energy.− − −: non-stratified case. —-: stratified
case (Fr= 0.1). The time unit is the initial turnover timescale.

Figure 7. Turbulence with an initially imposed shear. Velocity fields in a vertical section. Left:
end of the decay (t = 20Tt ) in the non-stratified case. Right: end of the decay (t = 20Tt ) in
the stratified case (Fr= 0.1).
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In the next section, we focus on wave-shear interaction which may be one
possible shear production mechanism in stratified turbulent flows.

5. Analytical Elements on Wave-Shear Interaction

Turbulent motions in a stably stratified medium generate a gravity wave field which
clearly has a great influence on the flow dynamics and, in particular, on mean mo-
tions. Our purpose in this section is to study the behaviour of one isolated internal
wave in a horizontal parallel flow.

Propagation of internal waves in the presence of a mean horizontal flow was
already theoretically and experimentally studied. Booker and Bretherton [1] ana-
lytically showed the possible existence of critical layers in such flows. Koop [9]
experimentally studied the internal wave field generated by an oscillating cylinder
in a non-uniform horizontal mean flow.

In this section, we give some elements showing that wave refraction by the
mean horizontal flow can explain a spontaneous growth of this mean flow and
possibly lead to a critical layer situation. One could introduce this phenomenon
by invoking the Taylor–Goldstein equation and its singularities (as done by Koop
[9], for instance). However, it is possible to get the same singularities by a simple
refraction calculation with WKB hypothesis.

Let us consider a two-dimensional velocity field in the(y, z) plane correspond-
ing to the refraction of a wave by a mean horizontal flow V(z,t). It will be assumed
thatV (z, t) depends onz on a lengthscale which is much greater than the vertical
wavelength of the internal wave. We would like to study the evolution of this
coupled system, supposing that at each time the wave pattern is instantaneously
refracted by the mean flow in the frame of the WKB theory.

Let φ(y, z, t) be the phase function of this refracted wave, with wave vector
k = (k2, k3) = ∇φ and constant frequencyω = ∂tφ. WKB assumptions provide
invariance along the horizontal direction so that

∂k2

∂y
= ∂k3

∂y
= 0.

Given thatk is irrotational, this implies that:

∂k2

∂z
= ∂k3

∂y
= 0.

Then, the wave field can be written as:

v = −k3(z, t)

k2
w0 cos(k2y + ϕ(z, t)− ωt), (8)

w = w0 cos(k2y + ϕ(z, t)− ωt), (9)

wherew0 is the amplitude of the wave and∂zϕ = k3(z, t).
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Furthermore, let us write the Eikonal equation associated to the refracted wave:

ω = k2V (z, t)+N k2√
k2

2+ k3(z, t)
2
,

whereN is the Brünt–Väisälä frequency.
On the other hand, the dimensional equation of the mean horizontal velocity

V (z, t) reads:

∂V

∂t
+ ∂

∂z
〈vw〉xy = ν ∂

2V

∂z2
, (10)

where〈·〉xy stands for the average on a horizontal plane.
We can calculate the shear production term∂z〈vw〉xy due to the wave field:

∂

∂z
〈vw〉xy = − ∂

∂z

w0
2

2

k3(z, t)

k2
= −w0

2

2

∂

∂z
tanα(z, t),

whereα(z, t) is the angle between the wave vector and the horizontal direction.
Using the Eikonal equation, the expression oftanα is given by:

tanα =
√

N2

[ω− k2V (z, t)]
2 − 1

and the evolution equation ofV (z, t) reads:

∂V (z, t)

∂t
= w0

2

2

∂

∂z

√
N2

[ω − k2V (z, t)]
2 − 1+ ν ∂

2V (z, t)

∂z2
, (11)

or:

∂V (z, t)

∂t
= w0

2

2

N2k2

[ω− k2V (z, t)]
2
√
N2− [ω− k2V (z, t)]

2

× ∂V (z, t)

∂z
+ ν ∂

2V (z, t)

∂z2
. (12)

This equation is not easily solved in the general case. However, it allows us to
show that the shear production term is singular when appear altitudes,zc1 where
ω = k2 V (zc1, t) andzc2 whereω − k2 V (zc2, t) = ±N .

The first case accounts for the appearance of a critical layer. However, it is
important to notice that a local increase (or decrease) of the mean horizontal ve-
locity may happen even in the absence of a critical layer. Indeed, wave refraction
contributes to the production term provided that∂zα is different from zero.

In the second case, we have tanα = 0. This corresponds to a horizontally
propagating wave. Such a wave is thus able to transfer energy to the horizontal
mean flow.
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In the previous simulations, in which turbulence-induced waves and a mean
flow coexist, the evolution of the mean shear energy may be explained in these
terms. It is not easy to highlight the appearance of critical layers in turbulent
situations. Nevertheless, in the next section we give a simple example showing
a mean flow production by wave refraction and it may be that one can detect such
a mechanism in the inner of fully developed turbulent flows.

6. Numerical Simulation of Wave-Shear Interaction

We have computed the decay of a stratified flow where the same horizontal mean
flow, as in Section 4, initially coexists with a monochromatic internal wave. The
initial Froude number is still Fr= 0.1 and Pr= 1. We use the same code as in the
previous sections (see Sections 2.1, 2.2, 2.3 and 2.5): the Navier–Stokes equations
are solved from a given initial condition and we observe the decay of the flow under
the influence of viscous dissipation. Here, the initial condition is the superposition
of the mean flow and a monochromatic gravity wave mode. The (two-dimensional)
initial dimensional velocity field and the corresponding temperature field are given
by:

u = 0, (13)

v = −w0 cos(k2y + k3z)+ V0 cos

(
2π

z

Lb

)
, (14)

w = w0 cos(k2y + k3z) , (15)

θ = N

αg
w0 sin(k2y + k3z) . (16)

We choosek2 = k3 so thatk = (0, k2, k3) makes an angle of 45◦ with the
horizontal direction. Furthermore, the wavelength is taken equal to one-fourth of
the periodic box (which is of the order of the initial integral lengthscalel of the
random velocity field previously simulated).

The wave amplitudew0 and the mean motion amplitudeV0 are chosen such
that the mean flow energy is initially equal to the poloidal energy. This induces an
equipartition between poloidal, potential and mean shear energies att = 0.

We present in Fig. 8 the velocity field in a vertical plane att = 0 andt = 4.5Tw,
whereTw is the Brünt–Väisälä period 2π/N . Evolution of shear and total energies
are shown on Figure 9.

Again, the main result we would like to focus on is the evolution of the mean
shear energy. Att ' 2Tw, after a short decay, this energy begins to increase and
at t ' 8Tw, the flow is almost totally dominated by the mean horizontal motion. It
is clear from these observations that an energy transfer occurred from the internal
wave mode to the mean flow mode. Furthermore, the low dissipative feature of this
monodimensional flow induces a very slow decay of the total energy at larget .
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Figure 8. Wave-mean flow interaction simulation. Velocity fields in a vertical section. Left:
t = 0. Right:t = 4.5Tw .

Figure 9. Wave-mean flow interaction simulation. Evolution of shear (− ) and total (—-)
energies, normalized by the initial total energy. The time unit is the Brünt–Väisälä periodTw .

7. Conclusion

The goal of this study was to focus on the behaviour of mean horizontal motions
within developed turbulent flows and to give some elements on one possible shear
production mechanism, say wave-shear interaction and critical layers. We have
first simulated the decay of turbulence under the influence of a strong density
gradient (Fr= 0.1 at t = 0) and plotted not only poloidal and toroidal energy
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evolutions but also the horizontal mean shear energy evolution. We showed that
the latter, even if representing a small part of the total energy, is produced at the
beginning of the decay and then slowly dissipated. We also performed calculations
using the same initial conditions but adding a horizontal mean flow such as those
encountered in turbulent wakes. The mean shear component is found to be the main
component remaining at the end of the decay, since it is produced at the beginning
and then slowly dissipated. We attributed the shear production phenomenon to the
interaction between internal gravity waves and the mean flow itself. This may be a
fundamental feature of stratified flows compared to non-stratified flows. To high-
light this phenomenon, we gave some analytical elements on refraction of internal
waves by a mean flow and showed that wave deviation participates to the produc-
tion term of the mean flow. This production can lead to critical layer situations and
may be one of the mechanisms responsible for the growth of the mean shear energy
in the previously simulated turbulent stratified shear flows. As an illustration, we
performed a simulation using as initial conditions a monochromatic internal wave
coexisting with a horizontal mean flow. It was found that rapidly, all the energy was
transferred to the mean flow component. This opens the way to further understand
interactions between turbulence, internal gravity waves and mean motions.

To conclude, let us emphasize the importance that this phenomenon may have
in environmental flows. Whereas in our simulations the damping effect of viscos-
ity rapidly dissipates the energy, wave refraction and critical layers should fully
develop in high-Reynolds number flows such as mixing layers or turbulent wakes
in stratified geofluids.
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